首页> 外文OA文献 >A combined inverse finite element – elastoplastic modelling method to simulate the size-effect in nanoindentation and characterise materials from the nano to micro-scale
【2h】

A combined inverse finite element – elastoplastic modelling method to simulate the size-effect in nanoindentation and characterise materials from the nano to micro-scale

机译:组合逆有限元-弹塑性建模方法可模拟纳米压痕的尺寸效应并表征从纳米级到微米级的材料

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Material properties such as hardness can be dependent on the size of the indentation load when that load is small, a phenomenon known as the indentation size effect (ISE). In this work an inverse finite element method (IFEM) is used to investigate the ISE, with reference to experiments with a Berkovich indenter and an aluminium test material. It was found that the yield stress is highly dependent on indentation depth and in order to simulate this, an elastoplastic constitutive relation in which yielding varies with indentation depth/load was developed. It is shown that whereas Young's modulus and Poisson's ratio are not influenced by the length scale over the range tested, the amplitude portion of yield stress, which is independent of hardening and corresponds to the initial stress for a bulk material, changes radically at small indentation depths. Using the proposed material model and material parameters extracted using IFEM, the indentation depth-time and load-depth plots can be predicted at different loads with excellent agreement to experiment; the relative residual achieved between FE modelling displacement and experiment being less than 0.32%. An improved method of determining hardness from nanoindentation test data is also presented, which shows goof agreement with that determined using the IFEM.
机译:诸如硬度之类的材料属性可能取决于压痕载荷的大小,而该载荷很小,这种现象称为压痕大小效应(ISE)。在这项工作中,参考了Berkovich压头和铝测试材料的实验,使用了逆有限元方法(IFEM)来研究ISE。发现屈服应力高度依赖于压痕深度,并且为了模拟该应力,开发了其中屈服随压痕深度/载荷而变化的弹塑性本构关系。结果表明,虽然杨氏模量和泊松比不受长度刻度在测试范围内的影响,但屈服应力的振幅部分与硬化无关,它对应于块状材料的初始应力,在小压痕下会发生根本变化深度。使用建议的材料模型和使用IFEM提取的材料参数,可以在不同载荷下预测压痕深度时间和载荷深度图,并且与实验具有很好的一致性;有限元模型位移与实验之间的相对残差小于0.32%。还提出了一种从纳米压痕测试数据确定硬度的改进方法,该方法显示了与使用IFEM测定的硬度一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号